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A SEMI-LAGRANGIAN METHOD BASED ON WENO

INTERPOLATION

Dokkyun Yi* and Hyunsook Kim**

Abstract. In this paper, a general Weighted Essentially Non-
Oscillatory (WENO) interpolation is proposed and applied to a
semi-Lagrangian method. The proposed method is based on the
conservation law, and characteristic curves are used to complete
the semi-Lagrangian method. Therefore, the proposed method sat-
isfies conservation of mass and is free of the CFL condition which
is a necessary condition for convergence.Using a several standard
examples, the proposed method is compared with the third order
Strong Stability Preserving (SSP) Runge-Kutta method to verify
the high-order accuracy.

1. Introduction

The Weighted Essentially Non-Oscillatory (WENO) interpolations
[8, 9, 10, 12, 13] are well known effective high-order non-oscillatory
schemes based on Eulerian approach methods (grid based methods) as
Finite Volume methods (FVM) or Finite Difference methods (FDM).
However, one of the drawbacks is that the methods are limited by the
Courant-Friedrichs-Levy (CFL) condition which is a necessary condition
for convergence.

In order to resolve this challenging problem, a semi-Lagrangian method
constructed by characteristic curves and grid points is introduced [1, 2, 3,
4, 5, 14]. Our main idea is that time integration of a given conservation
law (a partial differential eqnarray to be solved) is changed into space in-
tegration by using characteristic curves as the semi-Lagrangian method,
and the Gaussian quadrature rule to obtain high-order accuracy. There-
fore, it can not be guaranteed that the points of Gaussian quadrature
rule computed by the characteristic curves are on regula grid points
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(evaluating points or Eulerian points) [15]. In order to proceed with a
semi-Lagrangian, we should compute the value at the points of Gaussian
quadrature rule. Unfortunately, since the existing WENO interpolation
is constructed at regular grids, it can not apply to a semi-Lagrangian
method. This paper introduces a general WENO interpolation to ap-
ply to a semi-Lagrangian method. The general WENO interpolation is
constructed by using the idea of the existing WENO interpolation. In
particular, we can confirm that the proposed methodology is well applied
to the conservation law, and is excellent by comparing with the numer-
ical results of the existing WENO interpolation computed on the third
order Strong Stability Preserving (SSP) Runge-Kutta method [6, 7, 11].

2. Concept of the proposed method

2.1. Scalar conservation laws

We consider numerical solutions of the scalar conservation law

ut +∇· F(u) = 0, u(x, 0) = u0(x),(2.1)

where u0(x) is assumed to be a bounded variation function. For conve-
nience, the one-dimensional version,

ut + f(u)x = 0, u(x, 0) = u0(x),(2.2)

is used in this paper to illustrate the main ideas. The main difficulty in
solving (2.1) is that the solution may contain discontinuities, even if the
initial condition is smooth.

To solve (2.2), we discretize space and time by assuming uniform
mesh spacing of h = ∆x and ∆t, respectively. xi = i× h (i = 0, · · · , N)
denotes the spatial grid points; tn+1 = tn + ∆t the time stages; Ii =
[xi−1/2, xi+1/2], the cells; and ūni = 1

h

∫ xi+1/2

xi−1/2
u(x, tn)dx (i = 0, · · · , N),

the cell average of cell Ii at time tn, where uni = u(xi, t
n) (i = 0, · · · , N)

respects the point value. Integrating (2.2) over Ii × [tn, tn+1] gives∫ t+∆t

t

∫
Ii

ut dxdt = −
∫ t+∆t

t

∫
Ii

f(u)x dxdt.

From Fubini’s theorem, we get∫
Ii

∫ t+∆t

t
ut dtdx = −

∫ t+∆t

t

∫
Ii

f(u)x dxdt.
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This implies that∫
Ii

u(t+ ∆t)− u(t) dx = −
∫ t+∆t

t
f(u(xi+ 1

2
)))− f(u(xi− 1

2
)) dxdt.

Finally, our target eqnarray

ūn+1
i = ūni −

1

h

∫ tn+1

tn

[
f(u(xi+1/2, t))− f(u(xi−1/2, t))

]
dt(2.3)

is obtained. This eqnarray describes the cell average advance from tn

to tn+1. To descretize (2.3), it is necessary to design a time integration
scheme.

2.2. Schemes for time accuracy and quadrature integration

Eulerian approaches have the advantage of high-order accuracy, which
reduces the computational cost and yields similar or better results than
low-order methods on a fine mesh. However, to achieve the high-order
accuracy, we consider two factors, such as space and time. A finite
volume WENO scheme is one of the most powerful schemes for the
spatial accuracy, which provides non-oscillatory high-order accuracy. It
uses semi-discretization of (2.2), which is the integration form over the
interval Ii,

dū(xi, t)

dt
= −1

h

(
f(u(xi+1/2, t))− f(u(xi−1/2, t))

)
.(2.4)

To achieve the high-order time accuracy of the form (2.4), Runge-Kutta-
type time discretizations [12, 7, 6, 11] have been widely employed. How-
ever, such methods require a repetitive single step or a multi-step com-
putation, resulting in a high computation cost. For example, the third
order SSP Runge-Kutta method (with the CFL coefficient c = 1) [12] is
given by

u(1) = un + ∆tF (un),

u(2) =
3

4
un +

1

4

(
u(1) + ∆F (u(1))

)
,

un+1 =
1

3
un +

2

3

(
u(2) + ∆F (u(2))

)
,

where F (u) is the spatial operator, and the third order SSP multi-step
method [11] (with the CFL coefficient c = 1/3) is given by

un+1 =
16

27
(un + 3∆F (un)) +

11

26

(
un−3 +

12

11
∆F (un−3)

)
.



626 Dokkyun Yi and Hyunsook Kim

Our numerical scheme (2.3) has the advantage of high-order time ac-
curacy because our time accuracy is determined by the integration form.
We use the Gaussian quadrature rule to obtain an accurate integration
value. A quadrature rule is an approximation of the definite integral of
a function, usually stated as the weighted sum of the function values at
specified points within the domain of integration.

2.3. Time integration scheme of proposed method

The idea of the proposed method is to use the characteristic curve to
approximate the time integration. The Gaussian quadrature integration
form of (2.3) is

ūn+1
i = ūni −

∆t

h

∑
l

ωl
2

[f

(
un(xi+1/2,

tn + tn+1

2
+

∆t

2
τl)

)
−f
(
un(xi−1/2,

tn + tn+1

2
+

∆t

2
τl)

)
]dt,

where ωl denotes the quadrature weights and τl denotes the nodes of the
quadrature. To calculate the integration form, we use the characteristics
X(t) = (x0, t) satisfying

dX

dt
= f ′(u),(2.5)

which is the fundamental theory of the semi-Lagrangian method for
determining the departure point. Let f ′(u) = v and x at time t be the
point that becomes x̃ at time t+ ∆t using characteristics; then,

x = x̃+

∫ t+∆t

t
vdt.(2.6)

In particular, for a linear advection eqnarray f ′(u) = a, where a is
constant, (2.6) becomes x = x̃ + a∆t. Assuming v 6= 0; and since
dX = vdt, ∫ t+∆t

t
fdt =

∫ t+∆t

t

f

v
vdt =

∫ x

x̃

f

v
dX.(2.7)

From (2.7), the computable form
∫ x
x̃ f/v dX is obtained from the in-

computable form
∫ t+∆t
t fdt. Let g(u) = f/v; then, our objective is to

approximate ∫ x

x̃
g(u)ds.(2.8)
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From (2.8), the conservative form (2.3) becomes

ū(t+ ∆t) = ū(t)−
∫ x

i+1
2

x̃
i+1

2

g(u)ds+

∫ x
i− 1

2

x̃
i− 1

2

g(u)ds.(2.9)

Finally, our scheme is constructed using the global Lax-Friedrich scheme
and the quadrature points integration, i.e., the numerical flux function
in (2.9) is approximated by∫ x

i+1
2

x̃
i+1

2

g(u)ds ≈ h(û−
i+ 1

2

, û+
i+ 1

2

)

=
1

2

(∑
l

ωl
2

[
v
(
g(p−(vc + vτl)) + g(p+(vc + vτl))

)
−max |f ′(un)|

(
p+(vc + vτl)− p−(vc + vτl)

)])
,

where v = (xi+1/2 − x̃i+1/2)/2, vc = (xi+1/2 + x̃i+1/2)/2, ωl and τl are

weights and points of Gaussian quadrature, respectively, and p− and p+

are reconstruction polynomials obtained from ūn.

2.4. Reconstruction and approximation in 1D

In this subsection, the problems of interpolation and approximation
for obtaining polynomials p(x) are presented in one dimension. In other
words, a polynomial pi(x) of degree at most k − 1 is presented, and
the polynomial pi(x) is the k-th order accurate approximation of the
function u(x) inside Ii. In particular, this gives approximations of the
functions u(x) in the cell

u−i+α = pi(xi+α), u+
i−α = pi(xi−α), i = 1, ..., N, 0 < α < 1.

Since the mappings from the given cell averages ūj in the stencil S(i) ≡
{Ii−r, ..., Ii+s} to the values u−i+α and u+

i−α are linear, there exist con-
stants crj and c̃rj that depend on the left shift of the stencil r of the
stencil S(i), but not on the function u itself, such that

u−i+α =
k−1∑
j=0

crj ūi−r+j , u+
i−α =

k−1∑
j=0

c̃rj ūi−r+j .

We note that the difference between the values with superscripts ± at
the same location xi+α is due to the possibility of using difference stencils
for cell Ii and cell Ii+1. Using stencil S(i) to approximate xi+α, we can
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drop the superscripts ± and eliminate the need to consider c̃rj because
it is clear that

c̃rj = cr−1,j .

To understand how the constants {crj} are obtained, the primitive func-
tion of u(x),

U(x) ≡
∫ x

−∞
u(ξ)dξ,

is introduced, where the lower limit −∞ can be replaced by any fixed
number. Let U(x) be interpolated by P (x) which is a unique polynomial
of degree at most k, and Let p(x) be the derivative of P (x); then, the
Lagrange form of the interpolation polynomial P (x)

P (x) =

k∑
m=0

U(xi−r+m− 1
2
)
∏
l=0
l 6=m

x− xi−r+l− 1
2

xi−r+m− 1
2
− xi−r+l− 1

2

is obtained. Taking the derivative of P (x)− U(xi−r− 1
2
), we obtain

p(x) =

k∑
m=0

m−1∑
j=0

ūi−r+j∆xi−r+j

( m∑
l=0
l 6=m

k∏
q=0

q 6=m,l

(x− xi−r+q− 1
2
)

k∏
l=0
l 6=m

(xi−r+m− 1
2
− xi−r+l− 1

2
)

)
.

Let x = xi+α; then, for a uniform grid, ∆xi = ∆x; thus, the expression
for crj does not depend on i or ∆x:

crj =
k∑

m=j+1

m∑
l=0
l6=m

k∏
q=0

q 6=m,l

(r − q + α+
1

2
)

k∏
l=0
l 6=m

(m− l)

.

2.5. Reconstruction of point values by WENO

The basic idea of WENO is as follows: instead of using only one of
the candidate stencils to obtain the reconstruction, one uses a convex
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Table 1. The constants crj

combination of all of them. To be more precise, suppose the k candidate
stencils

Sr(i) = {xi−r, . . . , xi−r+k−1}, r = 0, . . . , k − 1(2.10)

produce k different reconstructions of the value vα,

v(r)
α =

k−1∑
j=0

crj v̄i−r+j , r = 0, . . . , k − 1;(2.11)

then, WENO reconstruction would involve a convex combination of all

v
(r)
α defined in (2.11) as a new approximation;

vα =

k−1∑
r=0

ωrv
(r)
α .

The key to the success of WENO is the choice of the weights ωr, which

should satisfy ωr ≥ 0,
∑k−1

r=0 ωr = 1 for stability and consistency. If the
function v(x) is smooth in all the candidate stencils (2.10), there exist
constants dr such that

vα =

k−1∑
r=0

drv
(r)
α ,

which are always positive, and owing to consistency,
∑k−1

r=0 dr = 1. When
the function v(x) has a discontinuity in one or more of the stencils (2.10),
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the corresponding weights ωr are essentially 0. This leads to the form

ωr =
αr∑k−1
s=0 αs

, r = 0, . . . , k − 1

with

αr =
dr

(ε+ βr)2
,

where ε is a small positive constant to avoid division by zero. Let the
reconstruction polynomial on the stencil Sr(i) be denoted by pr(x); then,
the smoothness indicator βr is defined as

βr =
k−1∑
l=1

∫ x
i+1

2

x
i− 1

2

∆x2l−1

(
∂lpr(x)

∂lx

)2

dx.

3. Numerical test

First, we present simple examples for obtaining the convergence order
and the advantage of the spatial high-order methods.

Example 3.1 (one-dimensional linear translation). The following lin-
ear scalar equation,

ut + ux = 0,

u(x, 0) = u0(x),

is solved with periodic boundary conditions.

The smooth initial condition, i.e., u(x, 0) = sin(x) + 1, is used on
[0, 2π]. We compute errors that are measured in L1 and L∞ norms at
t = 2. For the purpose of showing time order accuracy, the time in-
terval is taken ∆t = O(∆x), specifically ∆t = (8/25)∆x. Table 2 lists
the 5th order WENO convergence rates and numerical errors measured
in L1 and L∞ norms that are computed using the one-dimensional lin-
ear advection equation in [0, 2π]. Table 3 lists the 7th order WENO
convergence rates and numerical errors measured in L1 and L∞ norms
that are computed using the one-dimensional linear advection equation
in [0, 2π]. Table 4 lists the 9th order WENO convergence rates and nu-
merical errors measured in L1 and L∞ norms that are computed using
the one-dimensional linear advection equation in [0, 2π]. From Table 2,
3, and 4, the proposed method with high order WENO reconstructions
obtains the expected convergence rates.
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SSP Runge-Kutta 3 with 5th order WENO
Nx L1 error Order L∞error Order

16 9.39E-03 - 2.61E-03 -

32 2.83E-04 5.05 9.65E-05 4.76
64 8.87E-06 5.00 3.00E-06 5.01

128 3.08E-07 4.85 9.94E-08 4.91

256 1.35E-08 4.51 4.01E-09 4.63
512 9.11E-10 3.89 2.41E-10 4.06

The proposed method with 5th order WENO
Nx L1 error Order L∞error Order

16 9.06E-03 - 2.52E-03 -

32 2.68E-04 5.08 8.98E-05 4.81

64 8.15E-06 5.04 2.73E-06 5.04
128 2.53E-07 5.01 8.38E-08 5.02

256 7.91E-09 5.00 2.57E-09 5.03
512 2.47E-10 5.00 7.48E-11 5.10

TABLE 2

SSP Runge Kutta 3 with 7th order WENO
Nx L1 error Order L∞error Order

16 7.80E-04 - 2.87E-04 -

32 9.07E-06 6.43 6.71E-06 5.42
64 3.36E-07 4.75 2.61E-07 4.69

128 4.17E-08 3.01 1.56E-08 4.06

256 5.21E-09 3.00 1.45E-09 3.43
512 6.51E-10 3.00 1.67E-10 3.11

The proposed method with 7th order WENO

Nx L1 error Order L∞error Order

16 7.50E-04 - 2.82E-04 -

32 9.15E-06 6.36 5.86E-06 5.59

64 1.39E-07 6.04 1.67E-07 5.13
128 2.13E-09 6.03 5.00E-09 5.06

256 3.25E-11 6.03 1.37E-10 5.19

512 5.03E-13 6.02 3.84E-12 5.15

TABLE 3

Example 3.2 (two-dimensional linear transport). The two-dimensional
linear advection equation,

u t + ux + uy = 0,

u (x, y, 0) = u0(x, y),

is solved with periodic boundary conditions.
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SSP Runge Kutta 3 with 9th order WENO
Nx L1 error Order L∞error Order

16 3.08E-05 - 9.13E-06 -

32 2.68E-06 3.52 6.59E-07 3.79
64 3.33E-07 3.01 8.33E-08 2.98

The proposed method with 9th order WENO

Nx L1 error Order L∞error Order

16 2.06E-05 - 5.09E-06 -

32 3.05E-08 9.40 1.02E-08 8.97

64 5.37E-11 9.15 1.86E-11 9.09

TABLE 4

SSP Runge Kutta 3 with 9th order WENO
Nx,Ny L1 error Order L∞error Order

16 6.89E-04 - 3.41E-05 -
32 4.47E-05 3.95 2.18E-06 3.97

64 5.53E-06 3.01 2.79E-07 2.97

The proposed method with 9th order WENO
Nx,Ny L1 error Order L∞error Order

9th order spatial accuracy
16 4.46E-04 - 2.40E-05 -

32 7.01E-07 9.31 5.69E-08 8.72
64 1.34E-09 9.04 1.10E-10 9.01

TABLE 5

To check the convergence rates, the smooth initial condition u(x, y, 0) =

sin(πx/3.5) sin(πy/3.5) is used on [0, 7] × [0, 7]. For a two-dimensional
problem, we use the Strang splitting method, originally proposed in [2].
Table 5 lists the L1 and L∞ errors and convergence rates of the schemes
applied to a two-dimensional linear advection equation with smooth ini-
tial data u0(x, y). As in the one-dimensional case, the proposed method
with high order WENO reconstructions obtains the expected conver-
gence rates.
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